
Antonio Brogi

Department of Computer Science

University of Pisa, Italy

Microservices beyond COVID-19

MICROSERVICES 2020 - 3rd International Conference on Microservices

Invited keynote - September 10th, 2020



Q: Beyond COVID-19?

15:00 Coffee Break

15:30 Keynote: Microservices beyond COVID-19

16:30 Closing

Nick
A: Sorry, just a dirty trick to attract audience :)



Microservices, microservices, microservices …



Microservices

Main motivations

(1) Shorten lead time for new features/updates

▪ accelerate rebuild and redeployment

▪ reduce chords across functional silos

(2) Need to scale, effectively

▪ millions of users

…



OK but … what are microservices?



Microservices

(service-orientation done right?)

Applications = sets of services

+ each running in its own process container

+ communicating with lightweight mechanisms

+ built around business capabilities

+ decentralizing data management

+ independently deployable

+ horizontally scalable

+ fault resilient

+ DevOps culture and tools!



Microservices



Does my app respect the "microservices principles"?

If not, how can I refactor it?



Microservices, microservices, microservices …

Design principles, architectural smells and refactoring



Question

How can architectural smells affecting 
design principles of microservices be 

detected and resolved via refactoring?



A multivocal review

Recent review of white and grey literature aimed at identifying 

▪ the most recognised architectural smells for microservices, and 

▪ the architectural refactorings to resolve them

D. Neri, J. Soldani, O. Zimmermann, A. Brogi. Design principles, architectural smells and refactorings for
microservices: A multivocal review. Software-Intensive Cyber-Physical Systems. 2020.

principle

smell

smell

refactoring

refactoring

refactoring

(review of 41 studies presenting architectural smells & refactorings for resolving them)



Design principles

Independent deployability

The microservices forming an application should be independently deployable

Horizontal scalability

The microservices forming an application should be horizontally scalable

Isolation of failures

Failures should be isolated

Decentralization

Decentralisation should occur in all aspects of microservice-based applications, from data 
management to governance

[= possibility of adding/removing replicas of single microservices]



Architectural smells



Multiple services in one container



Endpoint-based service interactions

(e.g. load balancer)

(e.g. message queue)
invocation to 

specific instance



No API gateway

App clients must invoke directly app services 

(similar to endpoint-based service interaction smell)

Refactoring: add API gateway (that can be useful
also for authentication, throttling, …)



Wobbly service interactions

The interaction of m1 with m2 is wobbly when a 
failure of m2 can trigger a failure of m1



Shared persistence

Multiple services access/manage the same DB



s1

s2

db

db shared by 
multiple services

s1

s2

db'

db"

split database
- db splitted
- small changes to s1,s2
- not always possible/easy to implement
- eventual data consistency for replicated data

add data manger
- dm added
- very small changes to s1,s2
- added communication overhead

s1

s2

dbdm

s1+2 db

merge services
- s1 and s2 merged into single service
- not always easy to implement

Shared persistence



ESB misuse

Smart endpoints & dumb pipes !

ESB misuse may lead to 
undesired centralisation of 

business logic and dumb services



Single-layer teams





Microservices, microservices, microservices …

Design principles, architectural smells and refactoring

- mFreshener



mFreshener

A web-based GUI for

• editing app specifications

• automatically identifying architectural smells

• applying architectural refactorings to resolve the identified smells

A. Brogi, D. Neri, J. Soldani. Freshening the air in microservices: Resolving architectural smells via
refactoring. WESOACS 2019.



mFreshener



Excerpted principle-smell-refactoring taxonomy

horizontal scalability

no API gateway

endpoint-based

service interaction

add API gateway

add service discovery

add message router

add message broker

isolation of failures wobbly service interaction add circuit breaker

use timeout

decentralisation shared persistence

split data store

add data manager

merge services



Modelling application architecture

Graphical representation (of mTOSCA model)

service data store

message broker message router

edge

d

Example

c
circuit breaker

t
timeout

dynamic discovery



mFreshener: horizontal scalability

endpoint-based service interaction



mFreshener: isolation of failures

wobbly service interaction



mFreshener: decentralisation

shared persistence



Remarks 1/2

• a smell is not necessarily a principle violation

• mFreshener (freely) usable to analyse & refactor microservice-based apps

▪ industrial case study

▪ controlled experiment (100% vs. 49% smells identified, 83% vs. 1% resolved all smells)

≠

• “let it be” refactoring supported 

• 4 no API gateway smells 
• 1 shared persistence smell

• 2 API gateways added
• 1 data manager added



Remarks 2/2

• mFreshener works at the architecture level 
concrete implementation of refactoring left to application manager – much like in design patterns

• scalability: mFreshener features team-based views

• ongoing work: dealing with container orchestration



Can I play with mFreshener?

https://github.com/di-unipi-socc/microFreshener

https://github.com/di-unipi-socc/microFreshener


Microservices, microservices, microservices …

Design principles, architectural smells and refactoring

From incomplete specs to running apps



Motivations

▪Microservice-based applications integrate many interacting
services

→ Need to select an appropriate runtime enviroment for each
microservice

→ Need to package each microservice into the selected runtime
environment



Idea (1/2)

Exploit the TOSCA-based representation of 
microservice-based applications to specify only

the application components and the 
software support they need



Example

? ?

node_filter:

type: tosker.nodes.Container

properties:

- supported_sw:

- mvn: 3.x

- java: 1.8.x

- git: x

- ports:

- 8080: 8000

- os_distribution: ubuntu

node_filter:

type: tosker.nodes.Container

properties:

- supported_sw:

- node: 6.x

- npm: 3.x

- git: x

- ports:

- 3000: 8080



Idea (2/2)

Develop a tool for automatically completing
(and updating) TOSCA application

specifications by discovering and including
Docker-based runtime environments

providing the software support needed by each
microservice







TosKeriserMicroFreshener

DockerFinder

app

.tosca .tosca .tosca

A. Brogi, D. Neri, L. Rinaldi, J. Soldani. Orchestrating incomplete TOSCA applications with Docker. Science
of Computer Programming. 2018.
A. Brogi, D. Neri, J. Soldani. A microservice-based architecture for (customisable) analyses of Docker
images. Software: Practice and Experience. 2018.



Motivations

▪Microservice-based applications integrate many interacting
services

→ Need to select an appropriate runtime enviroment for each
microservice

→ Need to package each microservice into the selected runtime
environment



Idea

Develop a tool to automate the deployment 
on top of existing container orchestrators

Ingredients:
- a process management system inside containers
- a service for component-aware orchestration
- a packager capable of deploying on existing container orchestrators 



TosKeriserMicroFreshener

DockerFinder

TosKose

app

.tosca .tosca .tosca

M. Bogo, J. Soldani, D. Neri, A. Brogi. Component-aware Orchestration of Cloud-based Enterprise
Applications, from TOSCA to Docker and Kubernetes. Software: Practice and Experience. 2020.



Case studies

Thinking
Sock Shop



Can I play with these tools too?

https://github.com/di-unipi-socc/toskose

https://github.com/di-unipi-socc/TosKeriser

https://github.com/di-unipi-socc/DockerFinder

https://github.com/di-unipi-socc/toskose
https://github.com/di-unipi-socc/TosKeriser
https://github.com/di-unipi-socc/DockerFinder


TosKeriserMicroFreshener

DockerFinder

TosKose

app

.tosca .tosca .tosca

One sec … do I have to write
myself the TOSCA spec of my app?



Microservices, microservices, microservices …

Design principles, architectural smells and refactoring

From incomplete specs to running apps

Mining the architecture of microservice-based apps



G. Muntoni, J. Soldani, A. Brogi. Mining the Architecture of Microservice-Based Applications from their
Kubernetes Deployment. WESOACS 2020.

Automatically deriving the architecture 
of black-box applications

+ marshalling obtained 

architecture to TOSCA

eliciting 

services & databases

monitoring interactions 

among services & databases

identifying

integration 

components

https://github.com/di-unipi-socc/microMiner

https://github.com/di-unipi-socc/microMiner


Online boutique Sock shop Robot shop

Case studies



TosKeriserMicroFreshener

DockerFinder

TosKose

app

.tosca .tosca .tosca

MicroMiner



Microservices, microservices, microservices …

Design principles, architectural smells and refactoring

From incomplete specs to running apps

Mining the architecture of microservice-based apps

Concluding remarks



Take-home message: A (minimal) modelling of

microservice-based applications can considerably simplify

their design and analysis and allow automating their

container-based completion and deployment



Many interesting research directions on microservices
(non-exhaustive, biased list):

▪ DSLs for microservices

▪ Security

▪ Monitoring

▪ Identifying failure causalities

▪ Continuous reasoning

▪ Green computing

• …



… and thanks to

J. Soldani D. Neri O. Zimmermann M. Bogo G. Muntoni L. Rinaldi



Antonio Brogi

Department of Computer Science

University of Pisa, Italy

Microservices beyond COVID-19

MICROSERVICES 2020 - 3rd International Conference on Microservices

Invited keynote - September 10th, 2020


