Microservices beyond COVID-19

Antonio Brogi

Department of Computer Science
University of Pisa, Italy

MICROSERVICES 2020 - 37 International Conference on Microservices
Invited keynote - September 10th, 2020

Q: Beyond COVID-19?

A: Sorry, just a dirty trick to attract audience :)

15:00 Coffee Break
15:30 Keynote: Microservices beyond COVID-19
16:30 Closing

7 | | Ry
’% i | | i
i ‘ ..' s
- D Ao SRS AAENR. Y R T
- g A]) 0 s - -~ A
. s - A, Al
N | ', o

e e —

Microservices

Main motivations

Z;? (1) Shorten lead time for new features/updates
' \ - accelerate rebuild and redeployment
- reduce chords across functional silos

Wmii (2) Need to scale, effectively
- =) - millions of users

amazon Googie [N
n Linked [T} W ebay

Uber . GROUPON

zalando

Q.
)
Q

D
>
-
Q
\"2)
o
| -

9
S
Q
|
o)

+
)

-
=

+
-

O

V4

O

Microservices

Applications = sets of services
+ each running in its own preeess container
+ communicating with lightweight mechanisms
+ built around business capabilities
+ decentralizing data management
+ independently deployable
+ horizontally scalable
+ fault resilient
+ DevOps culture and tools!

(service-orientation done right?)

Microservices

Does my app respect the "microservices principles"?

If not, how can I refactor it?

Microservices, microservices, microservices ...

Design principles, architectural smells and refactoring

Question

How can architectural smells affecting
design principles of microservices be
detected and resolved via refactoring?

A multivocal review

Recent review of white and grey literature aimed at identifying
= the most recognised architectural smells for microservices, and
= the architectural refactorings to resolve them

smell —— refactoring
refactoring

sme11<<i::::
refactoring

(review of 41 studies presenting architectural smells & refactorings for resolving them)

principle

D. Neri, J. Soldani, 0. Zimmermann, A. Brogi. Design principles, architectural smells and refactorings for
microservices: A multivocal review. Software-Intensive Cyber-Physical Systems. 2020.

Design principles)

=i \\)—x

=
Independent deployability K

The microservices forming an application should be independently deployable

Horizontal scalability
The microservices forming an application should be horizontally scalable
[= possibility of adding/removing replicas of single microservices]

Isolation of failures
Failures should be isolated

Decentralization

Decentralisation should occur in all aspects of microservice-based applications, from data
management to governance

Architectural smells

ESB misuse

no API o

gateway shared persistence

o wobbly service o

interactions
single-layer
teams

multiple services
in one container

endpoint-based
service interactions

independent horizontal isolation of decentralisation
deployability scalability failures

Multiple services in one container

[z independent deployability

multiple services
inane container

oy

package each servicein a
separate container

)

Y :nw.-..w,; RS
ye

“"% AR)
"*qx-..‘, s

) n\\\ (“"‘A’ ln‘\\'v. .\)' ,’ e‘c"\‘f" S

A
2

) n\\\ (“"‘A’ ln‘\\'v. .\)' ,’ e‘c"\‘f‘l‘ S

A
2

$33 ARy, ’i"\“\'i'u\’.", .’ c.‘;\{‘ 4O

PR e N
VA)’"'N‘. =

Endpoint-based service interactions

(

horizontal scalability add service discovery
-
endpoint-based service (add message router 7
interactions \ ‘ J
R
add message broker

O
@O0) @O
invocation to O

specific instance (e.g. message queue)

add message broker
(w:14%: 0:4)

add service discovery
(w:55%; 0:18)

add message router
(w:31%; 0:9)
(e.g. load balancer)

No API gateway

no APl gateway :}} add APl gateway

horizontal scalability add service discovery

endpoint-based service
interactions

add message router

Y T AR

add message broker

App clients must invoke directly app services
(similar to endpoint-based service interaction smell)

Refactoring: add API gateway (that can be useful
also for authentication, throttling, ...)

Wobbly service interactions

add message broker

add circuit breaker

K wobbly service interactions

o

isolation of faillures

use timeouts

add bulkhead

The interaction of m1 with m2 is wobbly when a
failure of m2 can trigger a failure of m1

add message broker
(w:16%; 0:10)

add bulkhead
(w:20%: 0:13)

use timeouts
(w:22%; 0:14) add circuit breaker

(w:42%; 0:27)

Shared persistence

split database

| add data manager

—,

decentralisation / {I-. shared persistence
J\ MErge services

Multiple services access/manage the same DB

merge services
(w: 9% 0:3)

split database
(w:50%; 0:17)

add data manager
(w413 0214)

db shared by
multiple services

Shared persistence

)
ol
N———/
)
@ o db"
N———/

s oNn
@~

split database

db splitted

small changes to s1,s2

not always possible/easy to implement
eventual data consistency for replicated data

add data manger

dm added
very small changes to s1,s2
added communication overhead

merge services

sl and s2 merged into single service
not always easy to implement

decentralisation

ESB misuse

—

rightsize ESB

split database

—

add data manager

MEerge services

ESE misuse ﬂ
J
L shared persistence
single-layer teams jl

ESB misuse may lead to
undesired centralisation of
business logic and dumb services

Smart endpoints & dumb pipes !

splitteams by service

Single-layer teams

ESE misuse] [rlghtsize ESB
split database
decentralisation L shared persistence [add data manager
merge services
single-layer teams]} [splitteams by service

N
& &

-
\

multiple services 3

inane container y,

-

package each service in a
separate confainer

N

no APl gateway

endpoint-based service
interactions

[- independent deployability _jl
[horizental scalability

[isolation of failures]
[decentralisation

-

waobbly service interactions

-
\
(
\

add APl gateway

add service discovery

o,

add message rouler

add message broker

add circuit breaker

use timeouis

add bulkhead

ESE misuse

S

P

shared persistence

——,

rightsize ESB

split database

o,

add data manager

merge services

single-layer teams

b

r"__"'.

split teams by service

T I —=

Microservices, microservices, microservices ...

Design principles, architectural smells and refactoring
- uFreshener

uFreshener

A web-based GUI for

¢ editing app specifications

e automatically identifying architectural smells

e applying architectural refactorings to resolve the identified smells

A. Brogi, D. Neri, J. Soldani. Freshening the air 1in microservices:

Resolving architectural smells via
refactoring. WESOACS 2019.

uFreshener

microFreshener awimargms [+ & v A &

FAhae Fotl-mrddll w

Pioxia: g
Smell Abm T by R

istmractian forn peder jo ceder_gk

Dt ripRlBR | waraciyy i dhdaasg 1o - it

H““] A S S -

Diemc rigkion:

Excerpted principle-smell-refactoring taxonomy

A 4

no API gateway add API gateway

horizontal scalability

add service discovery

endpoint-based
service interaction

A\ 4

add message router

add message broker

A\ 4

A 4

isolation of failures wobbly service interaction add circuit breaker

use timeout

split data store

A 4

A 4

decentralisation

shared persistence add data manager

merge services

Modelling application architecture

Graphical representation (of uTOSCA model)
OASIS (9

O service Ej data store

mB| message broker |mRr| message router

D

lllllllllllllllllllllllllll

edge
d .
» dynamic discovery
- » circuit breaker
T

> timeout

LLFreshener: horizontal scalability

X

. o | N .4 O
endpoint-based service interaction
P .
Yy

O

add service discovery add message router add message broker

Y __.d_ N Y N 4
QO 0 OO OO
X y X y

LLFreshener: isolation of failures

wobbly service interaction Q ’O

X y

add circuit breaker use timeout add message broker

O OO Oofesk-O

y

uFreshener: decentralisation

shared persistence

split data store

add data manager merge services

O

I ¥m B N p—
th,f’ i — \;&—/" . _]
T — h+# yr
S——Fy®
X+l Oy
s AN
C Ko

Remarks 1/2

e mFreshener (freely) usable to analyse & refactor microservice-based apps

ey S Q O';;' ok T Q

= industrial case study QoA I T
* 4 no API gateway smells « 2 API gateways added
« 1 shared persistence smell « 1 data manager added

= controlled experiment (100% vs. 49% smells identified, 83% vs. 1% resolved all smells)

e a smell is not necessarily a principle violation

e ‘“let it be” refactoring supported 4

Remarks 2/2

e uFreshener works at the architecture level
concrete implementation of refactoring left to application manager — much like in design patterns

e scalability: uFreshener features team-based view

e ongoing work: dealing with container orchestration @

Can I play with pFreshener?

O https://github.com/di-unipi-socc/microFreshener

https://github.com/di-unipi-socc/microFreshener

Microservices, microservices, microservices ...

Design principles, architectural smells and refactoring
From incomplete specs to running apps

Motivations

= Microservice-based applications integrate many interacting
services

— Need to select an appropriate runtime enviroment for each
microservice

— Need to package each microservice into the selected runtime
environment

Idea (1/2)

Exploit the TOSCA-based representation of
microservice-based applications to specify only
the application components and the
software support they need

GUI
Software

host

node filter:
type: tosker.nodes.Container
properties:
- supported sw:
3.x

- java: 1.8.x

- mvn:

- git: x
- ports:
- 8080: 8000

- os_distribution: ubuntu

dep.

Example

J,l feature
N

API
Software

dependsOn

connection

endpoin

connectsTo

N
MongoDB

Container
[1

attachesTo

node filter:

type:
properties:

tosker.nodes.Container

- supported sw:
6.x

- npm: 3.x

- node:

- git: x
- ports:

- 3000: 8080

Tstorage

rLattachment
\/

DBVolume
Volume

Idea (2/2)

Develop a tool for automatically completing
(and updating) TOSCA application
specifications by discovering and including
Docker-based runtime environments
providing the software support needed by each
microservice

$ toskerise thinking.csar --policy size

,.L feature
N
ok dependsOn Rkl
Software Software

host f Tdep. hosﬁ Tconnection
hostedOn hostedOn connectsT
1 11 endpoinl lattach ment
v V

(N N7
oorts GUICont. oorts APICont. MongoDB attachesTo DBVolume
Container Container Container Volume

- . - - e
imagl & imag2 & Tstorage

$ toskerise thinking.completed.csar -f --policy most used

,L feature
h
GUI dependsOn API
Software Software

host connection

hostedOn hostedOn connectsTo]ﬂ
1 l endpoin ..Lattachment
N N (N J
borts GUIC?nt. oorts APICctnt. Mong?DB attachesTo DBVolume
Container Container Container Volume
e Tstorage
node %" maven"-’i"'

j fMicroFreshener\ (" TosKeriser R
— o —_— e
.tosca k .) .tosca k) .tosca

DockerFinder

[
S
_ J

A. Brogi, D. Neri, L. Rinaldi, J. Soldani. Orchestrating incomplete TOSCA applications with DocRer. Science
of Computer Programming. 2018.

A. Brogi, D. Neri, J. Soldani. A microservice-based architecture for (customisable) analyses of Docker
images. Software: Practice and Experience. 2018.

Motivations

= Microservice-based applications integrate many interacting
services

— Need to select an appropriate runtime enviroment for each
microservice

— Need to package each microservice into the selected runtime
environment

Idea

Develop a tool to automate the deployment
on top of existing container orchestrators

Ingredients:

- a process management system inside containers

- a service for component-aware orchestration

- a packager capable of deploying on existing container orchestrators

M fMicroFreshener\ 4 TosKeriser)
.tosca _) .tosca @ .tosca
_ _J

l kubernetes

DockerFinder

S
G J

M. Bogo, J. Soldani, D. Neri, A. Brogi. Component-aware Orchestration of Cloud-based Enterprise
Applications, from TOSCA to DockRer and Kubernetes. Software: Practice and Experience. 2020.

Case studies

Thinking Sock Shop

* 7 software components
* 14 containers (7 standalone)

* Deploy on Cluster of 4 VMs with Docker Swarm

#)

OASIS

Can I play with these tools too0?

https://github.com/di-unipi-socc/TosKeriser
O https://github.com/di-unipi-socc/DockerFinder
https://github.com/di-unipi-socc/toskose

https://github.com/di-unipi-socc/toskose
https://github.com/di-unipi-socc/TosKeriser
https://github.com/di-unipi-socc/DockerFinder

fMicroFreshener\

.tosca \¥

One sec ... do I have to write
myself the TOSCA spec of my app?

o

()

TosKeriser

~

.tosca

kubernetes

Microservices, microservices, microservices ...

Design principles, architectural smells and refactoring
From incomplete specs to running apps
Mining the architecture of microservice-based apps

i
|
0

| <z ~r v =

Automatically deriving the architecture
of black-box applications

Kubernetes Kubernetes

deployment cluster
files l

Step 1 Step 2 Step 3
Static Mining Dynamic Mining Refinement

P

+ marshalling obtained
architecture to TOSCA

refined
topology |

partial — complete

topology m,.__,o 0 topology |

graph ‘- ‘edge graph t
eliciting monitoring interactions identifying
services & databases among services & databases integration

components

G. Muntoni, J. Soldani, A. Brogi. Mining the Architecture of Microservice-Based Applications from their
Kubernetes Deployment. WESOACS 2020. O https://github.com/di-unipi-socc/microMiner

https://github.com/di-unipi-socc/microMiner

/
=

J:'urrn: delaabve

ariuervioe de fade

Eulier
Ioargemermor defouk

tromterd vl Eroterchectemul defush o

frull:nddlfu!!\
” | I

Cecknuservice deimk. e

.wnci,aﬂu:.:\.:

cartcrvicr. dcfouk

A

e deladian

rrdvwandefoulons GETECpsenice AL rocdarinat ngeenvre fefani sor hipREETY

.
e o o

cumenessrrize detaak proadcicatalogervice defdt ppingeice. de e
recdhe-ran defaulk

Online boutique

peymensenve drfaul e emmk e detw o

*

savemrorics drimt

Case studies

emaieradeiaak

Extuser

frent-ead sork-shop sve

front-ened snck-shap \
\ .

o soﬂ—msvr

/ \ .
/ e
[==] H N

.—....,.,.wl shopmc imErsacks sln; T s uu-l:-dva

urunele abap carh. u_. dueps

T =

e ...,.e-.wnqh., s i '"‘“Bw“*h‘l‘ -

J sprese ek)lur allpxlla.mll."lmp

oersdhsork-shap s paymentenckshpee sebhim ndk-chon o

. [————

pavment.uock-shap

eduE.lr:crl. shog

ratilrgue-dhsorkabopsrr wom-dhsnckchm et s dhseck-cho s

@ 0F @

catallogue-ch.sock shap eser-thosock-hap
carte-dhenck<hop rders-h snck-thop

Sock shop

Exx e

v

wwb.ded suk sve

Iad defauk

web defasdt

g defaul vwe

paymene default cart defalt wve

bt dolauk ave

catalogue defuslt @apanch defalt

mon god. ek sveibhimg defaslt o

e chorfanadt v

#. Gtaslt

wctin, def skt ave mysql delalt e

=yl defauk mongodh default rabbitme default

rwas awdng

Robot shop

app o'o.

l

[MicroMiner)
\ J
l fMicroFreshener\
-
.tosca K)

(")

TosKeriser

DockerFinder

|

A Y

.tosca

kubernetes

Microservices, microservices, microservices ...

Design principles, architectural smells and refactoring
From incomplete specs to running apps

Mining the architecture of microservice-based apps
Concluding remarks

e R e | S I —

Take-home message: A (minimal) modelling of
microservice-based applications can considerably simplify

their design and analysis and allow automating their

container-based completion and deployment

Many interesting research directions on microservices
(non-exhaustive, biased list):

» DSLs for microservices

= Security

= Monitoring

» [dentifying failure causalities
= Continuous reasoning

* Green computing

... and thanks to

L. Rinaldi

G. Muntoni

M. Bogo

D. Neri O. Zimmermann

J. Soldani

\&

ij
—
Regione Toscana

i
2014-2020
FONDO SOCIALE EUROPEO

Microservices beyond COVID-19

Antonio Brogi

Department of Computer Science
University of Pisa, Italy

MICROSERVICES 2020 - 37 International Conference on Microservices
Invited keynote - September 10th, 2020

